
「なぜ売上が伸びないのか?」「どの施策が最も効果的なのか?」ビジネスの現場では、こうした疑問に対して経験や勘ではなく、データに基づいた客観的な答えが求められています。
「回帰分析」は、売上や成果に影響を与える要因を数値で明らかにし、「広告費を10万円増やすと売上が約30万円向上する」といった具体的な関係性を導き出す統計手法です。Excel でも手軽に実行でき、マーケティング効果測定から事業計画まで幅広いビジネスシーンで活用されています。
この記事では、回帰分析の基本から実践的な分析手順、ツールの使い方、さらには分析時の落とし穴まで、ビジネス実務ですぐに使える知識を網羅的に解説します。データドリブンな意思決定を実現したい方は、ぜひ最後までご覧ください。
- 回帰分析とは?概要をわかりやすく解説
- 回帰分析における3つの分析方法
- 回帰分析を使う目的は?
- 回帰分析の活用事例
- 回帰分析の進め方
- 回帰分析に利用できるおもなツール・言語
- 回帰分析を行ううえでの注意点
- まとめ
回帰分析とは?概要をわかりやすく解説
回帰分析とは、ある結果(目的変数)に対し、どの要因(説明変数)がどのように影響したかを数式で解明する統計手法です。数値データに基づき両者の関連性や影響度を分析することで、施策と結果の因果関係を可視化します。
回帰分析を用いることで、「広告費を10%増やすと売上が約5%向上する」といった具体的な影響度の測定や、過去のデータに基づく将来予測が可能です。マーケティングでの効果測定、製造業での品質要因分析、教育での学習効果分析、不動産価格の要因分析など多分野で活用され、データに基づいた効果的な戦略立案や業務改善、意思決定の最適化に貢献します。
回帰分析における3つの分析方法
回帰分析で用いられる代表的な手法は以下の3つです。
- 単回帰分析
- 重回帰分析
- ロジスティック回帰分析
各手法について解説します。
1.単回帰分析
単回帰分析とは、1つの結果(目的変数)と1つの要因(説明変数)の間の因果関係を簡潔に捉える手法です。例えば、学習時間と九九の習熟度の関連性を分析する際に活用できます。ほかにも
「広告費と売上」「気温とアイス売上」「従業員数と生産量」「価格と需要数」など分析にも活用可能です。単回帰分析では、単回帰式「y = β0 + β1x +u」を用います。yは目的変数、xは説明変数、β0はxが0のときのyの値(切片)、β1はxの影響度(傾き)、uは誤差を示す記号です。
2.重回帰分析
重回帰分析とは、複数の要因(説明変数)が1つの結果(目的変数)にどの程度影響を与えるかを明らかにする統計手法です。例えば、商品売上や顧客満足度など、さまざまな要素が絡み合う事象の予測や要因特定に活用されます。
重回帰分析では、各要因の影響度を偏回帰係数として数値化し、「価格が1円上がると売上が-50個減少」「広告費が1万円増えると売上が3万円増加」のように具体的な影響度を把握できます。これにより複数の要因の中でどれが最も重要かを客観的に判断できます。
3.ロジスティック回帰分析
ロジスティック回帰は、複数の要素が影響し、「はい/いいえ」といった二者択一の結果が生じる確率を予測する分析手法です。ビジネスにおいては、顧客の購買行動予測や製品の不良品発生率の分析などに活用されます。
ロジスティック回帰分析の値は、特定のS字曲線(シグモイド関数)を用いて算出されます。
回帰分析を使う目的は?
回帰分析は、要因が結果に与える影響(因果関係)を明らかにするために用います。ここでは2つの例を紹介します。
目的変数に対して強く影響している説明変数を明らかにする
回帰分析の主要な目的は、目的変数に最も強く影響する説明変数を特定することです。複数の要因が目的変数へ与える影響度を数値で比較できるため、成果改善のために優先すべき要素の見極めが可能です。
例えば、店舗売上に対し席数と駐車台数のどちらがより重要か、といったケースで活用できます。
目的変数がどのような数値になるかを予測・推定する
回帰分析の目的のもう1つは、売上や顧客数などのビジネス指標を予測することです。分析で得た回帰式に影響を与える各要素(説明変数)の異なる値を入力することで、目的変数がどう変化するかを推定できます。例えば、新規計画の成果予測に活用可能です。
回帰分析の活用事例
データ傾向の把握や予測に有用な回帰分析は、多様な分野でその力が発揮されます。ここでは、3つの活用事例を紹介します。
市場の需要動向の把握
市場の需要動向を掴むには回帰分析が有効です。人口動態や季節等の要因と需要の関連を分析し、現状を把握できるため、在庫や生産計画の最適化に貢献します。機械学習などの高度な手法と比べ、回帰分析は結果の解釈が容易で、ビジネス担当者にも理解しやすいという特長があります。「なぜその予測になったのか」を関係者に説明する必要がある場面では特に有効です。
売上実績の分析
売上実績の分析と現状把握にも、回帰分析が活用可能です。製品価格、広告、経済状況といった要因と売上の関連性を数値で明確化します。
どの要素が売上に影響しているかを把握し、改善点を発見することで、事業運営の効率化や売上向上戦略の立案に役立てられます。なお、適切な分析には業界知識も必要となるでしょう。
不動産や資産価値の適正評価
不動産や資産価値を適正に評価するうえで、回帰分析は非常に有効な手法です。立地や広さ、築年数といったデータから、各要素が価格にどう影響するかを数値で明らかにすることで、客観的な価値の推定や価格予測に役立ちます。
回帰分析の進め方
ここでは、製品売上に影響する要因の分析を例に、回帰分析の進め方をステップごとに解説します。
分析目的と仮説を明確化する
回帰分析を始める前に、「何のために分析するのか」「どのような仮説があるのか」を明確にします。
例:
- 分析目的:新製品の売上予測モデルを構築し、マーケティング予算配分を最適化する
- 仮説:「広告費、価格、季節が売上に影響する」「広告費の影響が最も大きい」
説明変数の候補を選定する
予測・分析したい結果を目的変数として定めます。測定可能で、ビジネス目標に直結する指標を選ぶことが重要です。
例: 月間売上高(円)
注意点として「売上満足度」など主観的な指標よりも、客観的に測定できる数値を選択しましょう。
説明変数の候補を幅広く検討する
目的変数に影響を与えると考えられる要因を仮説とビジネス知識に基づいてリストアップします。
例:
- コントロール可能要因:広告費、価格、販促施策数
- 外部環境要因:季節、競合動向、経済指標
- その他:過去売上トレンド、在庫状況
データ収集と前処理を行う
分析に必要なデータを収集し、分析に適した形に加工します。
- データ期間:最低30サンプル以上(月次データなら2.5年分以上)
- データクリーニング:欠損値の処理、異常値の確認
- 変数変換:必要に応じて対数変換、標準化など
探索的データ分析(EDA)を実施する
回帰分析を行う前に、データの分布や変数間の関係を可視化して把握します。
- 散布図:各説明変数と目的変数の関係を確認
- 相関行列:変数間の相関を数値で把握
- 基本統計量:平均、標準偏差、最大・最小値を確認
単回帰分析から開始する
まず各説明変数と目的変数の個別の関係を単回帰分析で確認します。
- 各変数の統計的有意性(p値)を確認
- 決定係数で説明力を評価
- 回帰係数の符号がビジネス仮説と一致するか検証
重回帰分析でモデルを構築する
単回帰の結果を踏まえ、有意な変数を組み合わせて重回帰モデルを構築します。
- ステップワイズ法などで変数選択を行う
- 多重共線性(VIF > 10)をチェック
- モデル全体の適合度(調整済みR²)を評価
モデルの妥当性を検証する
構築したモデルが実用に耐えるかを多角的に検証します。
ここでは、統計的検証とビジネス的検証にわけます。
統計的検証
- 残差分析:残差の正規性、等分散性を確認
- 影響力診断:クックの距離で外れ値の影響を評価
- 交差検証:学習データとテストデータでの性能差を確認
ビジネス的検証
- 回帰係数の解釈:ビジネス常識と矛盾しないか
- 予測精度:実用レベルの精度が得られているか
- 安定性:期間を変えても同様の結果が得られるか
結果の解釈と活用方法を検討する
分析結果をビジネス判断にどう活用するかを明確にします。
- 各要因の影響度ランキングを作成
- 施策実行時の予測値を算出
- 信頼区間を含めたリスク評価を実施
- 定期的な再分析のスケジュールを決定
回帰分析に利用できるおもなツール・言語
回帰分析は、さまざまなツールや言語を使って手軽に行えます。今回は代表的な4つを紹介します。
Excelを活用した回帰分析
Excelは、専門ソフトなしでも手軽に回帰分析を実行できる便利なツールです。
データ分析アドインを追加後、「データ」タブの「データ分析」機能から「回帰」を選択します。あとは分析したいデータ範囲と結果の出力先を指定するだけで、統計的洞察を得られます。
Googleスプレッドシートを活用した回帰分析
広く普及しているGoogleスプレッドシートでも、回帰分析は手軽に行えます。データを入力して散布図を作成し、トレンドラインで「方程式を使用」オプションを選択するだけで、回帰直線や回帰式を視覚的に把握できます。
Googleスプレッドシートでは、2つのデータの関係性を簡単に分析できますが、詳細な統計的評価までは対応していません。
R言語を活用した回帰分析
統計解析を得意とするR言語は、回帰分析の実装にも適しています。例えば、駅の平均乗車人員と平均売上といったデータを用いて、lm()関数で線形回帰モデルを構築し、summary()関数でその結果を詳細に評価できます。
なお、R言語は、Google Colaboratoryなどの環境でも手軽に実行可能です。
Pythonを活用した回帰分析
Pythonでの回帰分析は、現状把握と予測のどちらにも活用できます。
現状把握には、統計ライブラリstatsmodelsで詳細な分析結果を出力します。一方、予測を主目的とする場合は、Scikit-learnライブラリを利用するのが一般的です。
分析の目的に応じて、これらのライブラリを使い分けることが重要になるでしょう。
回帰分析を行ううえでの注意点
誤った結論を避けるため、回帰分析で特に押さえておくべき4つの注意点を解説します。
説明変数の選び方(多重共線性に注意)
説明変数同士で強い相関があると多重共線性が生じ、分析結果が特定の要因に偏る恐れがあります。例えば「従業員数」と「店舗面積」や「気温」と「季節」のように関連性の高い変数は、相関係数が0.8以上の場合はどちらか一方を削除するといった対応で、多重共線性の影響を軽減しましょう。
相関関係は因果関係ではないことを理解する
回帰分析で変数の間に強い関連が見られても、それが直接的な原因と結果を示すわけではありません。例えば、「アイスクリーム売上と水着売上」は正の相関があるが、実際は「気温の上昇」という第三の要因が両方に影響しているように、見かけ上の相関が真の因果関係を示すとは限りません。ビジネスにおいても「店舗売上と近隣人口」のような相関を発見した際は、「立地条件の良さ」が両方に影響している可能性を考慮するなど、論理的な因果メカニズムを検討することが重要です。
過学習のリスクと対策を行う
モデルが訓練データに過剰適合し、ノイズまで学習してしまうのが過学習のリスクです。結果、未知データへの予測精度が低下します。
過学習の対策としては、訓練・テストデータ分割による検証や、特に重回帰では変数を吟味し、偶然の影響を受けにくい汎用モデルを構築することが有効です。
外れ値の影響を考慮する
回帰分析を行う際、他のデータ群から極端に離れた「外れ値」の存在は考慮すべき点です。例えば、月間売上データにおける「特別セール月」や「システム障害月」、気温と売上の分析における「異常気象日」などが外れ値にあたります。
外れ値は、回帰式を自身に引き寄せ、分析結果が本来の傾向から大きくずれる原因となります。散布図などで可視化し、除去や影響を受けにくい手法の適用を検討しましょう。
分析前の準備でサンプルサイズやデータの質にも注意する
分析前に、サンプルサイズやデータの質にも注意しましょう。説明変数1つにつき最低でも10~15程度のサンプルが必要です。また、データの質は測定誤差や定義の統一性の確認も怠ってはいけません。分析結果は、季節性や外部環境にも影響するため、適切な期間を選択することも重要です。
まとめ
回帰分析は、「なんとなく」から「根拠のある」意思決定への転換を支援するツールです。Excelなどの身近なツールで始められる手軽さがありながら、売上要因の特定から将来予測まで、ビジネスの重要な判断を数値で裏付けできます。
ただし、回帰分析の真価を発揮するには、適切なデータ準備と結果の正しい解釈が不可欠です。多重共線性や外れ値といった統計的な注意点を理解し、相関関係と因果関係を混同しないことが、誤った判断を避ける鍵といえます。
総合マーケティング支援企業であるマクロミルは、データ分析からマーケティング施策の実行までを一気通貫でサポートします。
マクロミルの回帰分析を活用した具体的な成功事例や分析手法の詳細に興味があれば、お気軽にお問い合わせください。貴社のマーケティング課題解決のヒントが見つかるはずです。
著者の紹介

プラスシーブイ株式会社 代表取締役
横溝 裕一
大学卒業後、WEBライターとしてブランディングテクノロジー株式会社へ入社。マーケティングコンサル会社でクリエィティブディレクター・マーケター・コンサルタントを経て、コロナ過に脱サラして2020年9月にプラスシーブイ株式会社を設立。専門はデジタルマーケティング・コピーライティング・ブランディング。
カテゴリー
アクセスランキング
ナレッジブログランキング
メールマガジン
マーケティングに関するホットな話題やセミナーなどの最新情報をお届けします